Standard Form of a parabola

$$
y-k=a(x-h)^{2}
$$

vertex (haik) a - up or down
Example

$$
y+2=-4(x-3)^{2}
$$

vertex $(3,-2)$
opens down

$$
\text { slope }=-4
$$

domain $(-\infty, \infty)$ - slope (narrow)

range. $(-\infty,-2]$
axis of symm at $x=3$

$$
\begin{aligned}
& \text { Mas minim at }-2 \\
& y \text { inteceept } y+2=-4(0-3)^{2} \\
& x=0 \quad y+2=-2 \cdot 9 \\
& y+2^{-2}-36_{y}^{\prime 2} \text { int }=-38 \\
& \text { Yesterday } \\
& x \text { intercepts } y=x^{2}-4 x=12 \\
& \begin{array}{c}
x \text { intercepts }=-12 \\
x=0
\end{array} \\
& 0=x^{2}-4 x-12 \\
& y=0 \quad 0=(x-6)(x+2) \\
& x=6 \text { or }-2 \\
& x \text { vortex }=\text { middle of }-2 \text { an } 6 \\
& x=\frac{-2+6}{2}=2 \\
& x_{v}=2 \\
& y=2^{2}-4.2-12 \\
& \text { 4-8-12 } \\
& y=-16 \\
& \text { vertex }(2,-16)
\end{aligned}
$$

$$
y-k=a(x-h)^{2}
$$

Using standard form to find the equation from information
*) A parabola has a vertex of ($4,-2$) and the point $\binom{2,10}{x}$. Findits equation.

$$
\begin{aligned}
& y-k=a(x-h)^{2} \\
& y+2=a(x-4)^{2} \\
& 10+2=a(2-4)^{2} \\
& 12=9(-2)^{2} \\
& 12=a^{4} \rightarrow y+2=3(x-4)^{2} \\
& 9=3
\end{aligned}
$$

need a putinxandy

Exercise 4 - changing an equation from general to standard.

$$
\begin{array}{ll}
\begin{array}{ll}
\text { Standard } & \text { General } \\
y+4=-2(x+3)^{2} & y=x^{2}-5 \\
\text { preferred fur } & \\
\text { graphing }
\end{array} &
\end{array}
$$

Switch from General to Standard by completing the square

$$
\begin{aligned}
& \text {.15 } 2+15^{-15} \text { completing square } \\
& \text { completing square } \\
& x^{2}+10 x+\frac{25}{9} \\
& x^{2}-6 x+9 \\
& y-15^{16}=x^{2}+8 x+16 \\
& x^{2}-7 x+\frac{12.25}{64} \\
& x^{2}-16 x+\frac{64}{2} \\
& \text { 1) Move number } \begin{array}{c}
\text { (isolate } x)
\end{array} \\
& y-19^{2^{5}}=x^{2}-10 x+25 \\
& y+6=(x-5)^{2}
\end{aligned}
$$

Step 1
stol ante
${ }^{2}$
step te
comply
square
($\frac{1}{2}{ }^{\text {ma dd }}$ ale)

